Acknowledgment. We thank the Department of Energy for financial support of this work. Special thanks are also extended

to Scott E. Carver for scaling up the one-step synthesis of fluoranthenedicarboxylic ester 2.

Additions and Corrections

¹H NMR Spectroscopy and the Electronic Structure of the High Potential Iron-Sulfur Protein from *Chromatium vinosum* [J. Am. *Chem. Soc.* 1991, 113, 1237–1245]. IVANO BERTINI,* FABRIZIO BRIGANTI, CLAUDIO LUCHINAT, ANDREA SCOZZAFAVA, and MARCO SOLA

Pages 1243 and 1244: Figures 6A and 8A were printed incorrectly. The corrected figures and captions are given below.

Figure 6. (A) Temperature dependence of the ¹H NMR isotropic shifts of oxidized HiPIP calculated by using eq 8 with $J = 300 \text{ cm}^{-1}$, $\Delta J_{12} =$ 100 cm^{-1} , $\Delta J_{34} = -100 \text{ cm}^{-1}$, and $B_{34} = 0 \text{ cm}^{-1}$ (---), or $J = 300 \text{ cm}^{-1}$, $\Delta J_{12} = 70 \text{ cm}^{-1}$, $\Delta J_{34} = 0 \text{ cm}^{-1}$, and $B_{34} = 300 \text{ cm}^{-1}$ (---) (Fe₁ = Fe₂ = Fe₃ = Fe(111) and Fe₄ = Fe(11), $S_{12} = 4$, $S_{34} = 9/2$ ground state).

Figure 8. (A) Temperature dependence of the ¹H NMR isotropic shifts of reduced HiPIP calculated by using eq 8 with $J = 400 \text{ cm}^{-1}$, $\Delta J_{12} = \Delta J_{34} = -200 \text{ cm}^{-1}$, and $B_{12} = B_{34} = 0 \text{ cm}^{-1}$ (--), or $J = 400 \text{ cm}^{-1}$, $\Delta J_{12} = \Delta J_{34} = 0 \text{ cm}^{-1}$, and $B_{12} = B_{34} = 400 \text{ cm}^{-1}$ (--) (Fe₁ = Fe₃ = Fe(11)) and Fe₂ = Fe₄ = Fe(11), $S_{12} = S_{34} = 9/2$ ground state), or $J = 200 \text{ cm}^{-1}$, $\Delta J_{12} = \Delta J_{34} = 200 \text{ cm}^{-1}$, and $B_{12} = B_{34} = 0 \text{ cm}^{-1}$ (---) (Fe₁ = Fe₂ = Fe(11) and Fe₃ = Fe₄ = Fe(11), $S_{12} = S_{34} = 0 \text{ ground state}$). For each choice of parameters the upper curve corresponds to Fe(11) whereas the lower curve corresponds to Fe(11).